Two-Photon Algebra and Integrable Hamiltonian Systems

نویسندگان

  • Angel BALLESTEROS
  • Francisco J HERRANZ
چکیده

In a recent paper [1], a systematic construction of integrable Hamiltonians with coalgebra symmetry has been proposed. Such procedure can be applied to any Poisson coalgebra (A,∆) with generators Xi, i = 1, . . . , l and Casimir element C(X1, . . . , Xl) as follows. Let us consider the N -th coproduct ∆(Xi) of the generators and the m-th order (2 ≤ m ≤ N) coproducts ∆(m)(C) of the Casimir operator of the coalgebra (recall that the m-th coproduct is an algebra homomorphism that maps ∆(m) : A → A⊗A⊗ · · ·m) ⊗A). By making use of the structural properties of the coproduct it can be proven that { ∆(C),∆(Xi) } = 0, i = 1, . . . , l. (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable Hamiltonian Systems Associated to Families of Curves and Their Bi-hamiltonian Structure

In this paper we show how there is associated an integrable Hamiltonian system to a certain set of algebraic-geometric data. Roughly speaking these data consist of a family of algebraic curves, parametrized by an aane algebraic variety B, a subalgebra C of O(B) and a polynomial '(x; y) in two variables. The phase space is constructed geometrically from the family of curves and has a natural pro...

متن کامل

A systematic construction of completely integrable Hamiltonians from coalgebras

A universal algorithm to construct N -particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this g...

متن کامل

ar X iv : m at h / 99 07 16 9 v 1 [ m at h . Q A ] 2 6 Ju l 1 99 9 Integrable deformations of Hamiltonian systems and q - symmetries 1

The complete integrability of the hyperbolic Gaudin Hamiltonian and other related integrable systems is shown to be easily derived by taking into account their sl(2, R) coalgebra symmetry. By using the properties induced by such a coalgebra structure, it can be proven that the introduction of any quantum deformation of the sl(2, R) algebra will provide an integrable deformation for such systems...

متن کامل

Hopf Algebra Symmetries of an Integrable Hamiltonian for Anyonic Pairing

Since the advent of Drinfel’d’s double construction, Hopf algebraic structures have been a centrepiece for many developments in the theory and analysis of integrable quantum systems. An integrable anyonic pairing Hamiltonian will be shown to admit Hopf algebra symmetries for particular values of its coupling parameters. While the integrable structure of the model relates to the well-known six-v...

متن کامل

Integrable counterparts of the D-Kaup-Newell soliton hierarchy

Two integrable counterparts of the D-Kaup–Newell soliton hierarchy are constructed from a matrix spectral problem associated with the three dimensional special orthogonal Lie algebra soð3;RÞ. An application of the trace identity presents Hamiltonian or quasiHamiltonian structures of the resulting counterpart soliton hierarchies, thereby showing their Liouville integrability, i.e., the existence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001